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1. Stgtememt of the Problem. Let us consider the system of ordinary 

differential equations 

x’ (t) = -4 W X (t) + i Bi 0) ui (0 + F 0) (1.1) 

with the initial condition 
i=l 

x (0) = x0 (La) 

where A(t) is an n-by-n matrix and F(t), Bi(t). i = 1, . . . . r, are n- 
dimensional vectors. We shall assume that the elements of the matrix 
A(t) and the components of the vectors F(t), Bi(t) (i = 1, . . . . r) are 
continuous real functions, specified on [O, 7!. Let T be fixed. 

We shall also assume that the control functions ul(t), . . . , ur( t) 
are real functions of time specified on [O, TI and satisfy the inequal- 
ities 

I ui (4 I d i (i = 1, . . ., r) (i-3) 

The entire class of such functions (we shall denote it by 8) may be 

assumed to coincide with the totality of piecewise continuous functions 
or, in the general case, with the totality of measurable functions. 

839 
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Let X(t, u) be a solution of equation (1.1) with the initial condi- 

tions (1.2) for a specified u(t) = al(t). . . . . u,.(t), let N(t) be a sym- 

metric negative-definite square matrix with continuous coefficients, 

and let l denote transposition. 

It is required to find u(t) E Cl such that the functional 

T 

J (u) = $ X* (t, u) A’ (t) X (t, u) dt 
0 

takes on its minimum possible value. 

(1.4) 

We shall describe below a successive-approximations method for 

minimising the functional equation (1.4). The method is illustrated for 

the case in which the functional is of the form 

T 

J(u) -= 1 X* (1, u) X (t, u) dt 
0 

(1.5) 

2. Solution of the auxiliary problem. Let C(t) be an arbitrary con- 

tinuous real n-dimensional vector function; it is required that we find 

among the control functions mentioned in Section 1, the one which will 

minimize the functional 

J,(u) = i X* (t, u) C (t) dt 
0 

(2.1) 

If we know a fundamental system Y(t) for the homogeneous part of 

equation (l.l), the solution of the system (1.1) with the initial con- 

ditions (1.2) is obtained by Cauchy’s formula 

x (t) = Y (t) Xo + s Y(t) Y-’ (z) B3 (T) IQ(Z) dz -I- $ Y(t) Y-’ (z) F (2) dz (2.2) 
0 i=1 0 

This means that for any choice of ul(t), . . . . u,(t) the value of the 

functional (2.1) can be calculated 

‘ 

J, (u) = ‘s C* (t) [Y (t) Xo + 1 Y(t) Y-’ (4 F (2) dz + 

0 0 

+ S i Y it) Y-’ (2) By ui (2) d-1 dt 
0 i=l 

Let us consider 

Ti 

Ji = 
ss 

C* (t) [Y (t) Y-’ (z) Bi(%)] ZQ(T) d%dt (i = 1, . . ., r) 

00 
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We integrate by parts 

Ji= T [O (T) - 0 (t)!* [Y-l (t) B,(t)1 ui(t) dt 

0 
t T 

0 (t) = 
s 

y* (2) c (2) A, 6) (T) - o (t) = 5 y* (z) c (2) d% 

0 t 

Since 

J, (u) = 1 C* (t) Y (t) Xi,dt + i Ji+ i C* (t) s’ Y (t) Y-’ (z) F (z) dz dt 

0 i=1 0 0 

it follows that JC(u) will take on a minimum value if and only if 

1 

* vi (t) = - sign 
{[S 

Y* (2) C (T) dz 1 W-’ 0) B&l} (i = 1, . . ., r) (2.3) 

t 

where 

sign a = 1 (a > 0), sign a = 0 (a = 0), sign a = - 1 (3 < 0) 

Thus, if the fundamental matrix Y(t) is known, the solution of the 

auxiliary problem is given by the formula (2.3). 

3. The successive-approximation method. Let us take an arbitrary con- 

trol function u’(t) E U. Let X,(t) be a solution of the system (1.1) 

with the initial condition (1.2) for u(t) = u’(t). We solve the aux- 

iliary problem for C(t) = X,(t). Let vl( t) be the control function which 

yields a minimum value for the auxiliary problem, and let xl(t) be the 

solution corresponding to this control function. We set 

T T 

s 
X,* (t) X, (t) dt = O,, 

5 X7&* (t) Xn (t) dt = ‘Pn 
0 0 
T T 

s 
xn* (4 xn 0) dt = Y’,,, 

s 
X* (1) X (t) dt = 0 

0 0 

Then 91 6 8,. If the equality p1 = 8, holds, then u’(t) is already 

the optimal control function and the process is terminated. In the case 

91 < 8, we proceed as follows 

a) if vl d cpl, we set 

u2 (t) = 81 (t), x2 (t) = Xl 0) 

b) if yl > qua, we construct 

u (t) = ad (t) + (1 - a) 29 (t) (0 < a < 1) 
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In view of the linearity of the system (1.1). the corresponding solu- 
tion is of the form 

We select a such that 8 takes on its minimum value (among 
a E (0, 1)). As is readily shown, this will be true for 

Ue take 

o = $1 -h 
f-4 - *1+ 91 

all 

(3.1) 

us (t) = ud (t) + (1 - a) 01 (t), X¶ (4 = ax1 U) + (1 - a) Xl (2) 

where a is chosen by formula (3.1); then 8, < 81, and so on. 

Thus, we can always select X,(t) if u’(t) is not optimal. Solving the 
auxiliary problem for C(t) = X,(t), we obtain x2(t) and proceed there- 
after as before. The resulting sequences u’(t), u2(t). . ..* x,(t), 
X2(t)* . ..I are such that 6,, < em; if the equality holds in any of 
these cases, the optimal control function has been found and the process 
is terminated. The sequence 0, is convergent. If Q2 denotes the minimum 
possible value of the functional (1.5) - the lower bound of the func- 
tional (1.5) on u(t) E U is actually reached, as will be shown later 
- then 

%- ~;'<Q'<e,, u,=i (q,n>o), a,=~ (rp,n<o) 

Thus, at each step we know the intervals in which the minimum of the 
functional occurs. 

4. The fumduental theorem. The successive-approximations described 
in Section 3 monotonically reduce the values of the functional J(u). 

The sequence of functions X,(t), X2(t), . . . , converges on LO. Tl to 
a continuous vector function C,(t), and the sequence of values 01, 
0 2’ .a* converges to 

T 

min P (t, u) X (1, u) dt 

UEU s 
0 

An optimal control function exists. Moreover, for those i for which 
the set Qi of the zeros of the function 

CD,(t) = [i y* (%I co (2) dz]*lY-‘(d B*(Gl 
t 

is of the measure zero, the corresponding uim(t) converge in measure to 
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a uniquely defined optimal control function ui (t) . 

Proof. It has already been established that 

HX,ll=l/O~-C if m-i00 

If X, 9 0, the C > 0. We first show that 

T 

lim min 
[ s m-+aY uEuo 

X* (t, 14) X, (t) tit 1 =inf lim qm >,Cr 
*-KO 

(4.1) 

Let us assume that this is false, that is, that there exists an 

‘0 
> 0, such that for every N we can find an m > N for which 

‘Pm =O--r,<Q--rr (4.2) 

We shall consider only those XR(t) for which the inequality (4.2) 

holds. It should be noted in that case yrn > qm, since otherwise we would 

have y, d 0, by our rule for the selection of Xm+l(t) = Xm(t); but for 

X,(f) 

*m6cp,dCa- ro<CB 

which contradicts the statement that 11 X,,, 11 is a decreasing sequence 

with the limit C. Therefore q~, > ‘pm, so that 

X m+l 0) = ox, 0) + (1 - a) xm 0) 

where a is chosen by formula (3.1). Then 

Having selected m such that 

em==c*+s,, e, 4 0 if m-900 

we have 

8 
CP[~m+~mem/Ca-Ca+2~m-~maf~l 

m+1 
= 

qm + em- Ca + 2rm <c’ 

since y,,, is bounded (by the properties of a linear system, each coordi- 

nate is bounded, so that the integral v’, is also bounded). But the in- 

equality em+1 < C2 is impossible, since II Xm II tends to C from above. 
From this follows the inequality (4.1). But, since ‘p,,, < 8,. it is true 

that q,,, - C2 as m - co. 

Let us now consider the sequence 

XI (t), Xa PI. - . . (4.3) 
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This is a sequence of vector functions which are differentiable on 

[O, ~1. From the properties of linear systems it follows that the 

sequences of coordinates 

(d w, d w, * * .), (~2 w, m a 0). * * .I. * . . * (ZP (t), an 01, . . .) 

are equicontinuous and uniformly bounded on [o. ~1. 

Then, by the Arzela-Ascoli theorem [d, we can select a convergent 

sub-sequence of vector functions such that their limit is also a con- 

tinuous vector function. Let us assume that there are two sub-sequences 

x, (Q, x,* (r), * * 1 xmj 0) -j-- co (t) 

Xm,’ ws X*’ (4, * * * , Xrni 0) G Co’ (4, 

and let 

Then 

Co (4 * Co’ (11, II co II = II Co’ II = C 

1 T 

s 
co* (1) CO (t) dL do - po, PO>0 

s 
[Co 0) - Co’ (t)l* dt > 0 

0 0 

(the last inequality holds by virtue of the fact that C,(t) and C,‘(t) 

are continuous vector functions and do not coincide identically). Then 

T 

\ Co+ (t) Co’ (t) dt < + [ [ Co2 (t) dt + j Co’* (t) dt] = C’ 

0 0 

But, having selected X.,(t) close to C,,(t) and Xm.’ close to C,,‘(t), 

we obtain J L 

T 

s 
Xmi’* (t) Xmj (t) drdC2- PO + e <Cz 

0 

since E can be made arbitrarily small. But in that case 

T T 

min * 
u&J s 

Xmj* (t) X (t, u) dt < s 
Xmj* (t) XT’ (t) dt < C’ 

0 0 

which contradicts the inequality (4.1). Hence the sequence of functions 

(4.3) converges to some continuous vector function C,(t). 

Let us show that 



Construction of an integral-optiral progranned control function 835 

T 

8 m-, min as mdw 
u&J s 

X* (t, U) X (t, u) dt 

0 

Suppose this is false: that is, suppose that there exi5t.s some 

w(t) E II such that 

T 

s 
X* (t, w) X (t, to) dt < C” 

0 

Then, having selected Xl(t) close to C,(t), we 

T 

s 
X,,,* (t) X(t, w) dt <Cs 

0 

Then we also have 

obtain 

T T 

2; s x,* (t) X (t, u) dt < s X,,,* (t) X (t, w) dt < C’ 

0- 6 

which contradicts the inequality (4.1). Thus 

1 

0 m+s; 
s 

X* (t, u) X (t, u) dt as mdw 

0 

but in that case we also have 

T T 

5 X,,,* (t) Co (t) dt -mi; 
s 

X* (t, u) Cr, (t) dt as m-+w 

0 0 

and, by Section 2. for those i for which the set Ri of the zeros of the 

functions 

mi (t) = [ i y* (z) Co (r) dz ]*[Y-’ (t) % (t)l 

0 

is of measure zero. the corresponding uim(t) converge in measure to a 

uniquely defined optimal control function 

ui* (t) = - sign Qi (t) (4.4) 

We have thus proved that such an optimal control function exists. 

In [2. PP. 146,1471 it is, in fact, proved that in an arbitrary case 

(independently of the measure of the sets Ri) an optimal control func- 

tion exists. On the sets [O. ~1 - Ri the corresponding optimal control 



838 V.F. Der’ianov 

function uift) is uniquely defined and coincides with (4.4). 

The optimal solution (trajectory) X(t) is uniquely defined, as has 
already been shown. The vector function X(t) has a uniquely defined 

derivative, but this is not enough to prove the uniqueness of the 
optimal control function, since the equation 

$ Bi (t) z+(t) = X” (t) -A (t) X (t) - P (f) (tE ro, Tl) 
i=l 

may be satisfied by several control functions u(t) E U (here X(t) 
assumed to be a known vector function). 

I am grateful to V.I. Zubov for his useful advice and comments. 
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